Electronic Circuit to Mimic the Neural Network for the Saccade Controller Team 8

نویسندگان

  • Justin Morse
  • Dean Poulos
  • Edward Ryan
  • John Enderle
چکیده

The proposed device is an electronic circuit that mimics the neural network controlling fast eye movements, or saccades. The device simulates the signals produced by each neuronal population during the control of a horizontal saccade and allows for observing and recording. It will serve as a valuable teaching tool in the field of neural control. Furthermore, the device will have applications in the realm of diagnosing and properly treating brain injury. Finally, this device could be incorporated into a system for controlling the eye movements of a realistic, artificially intelligent robot. The FitzHugh-Nagumo model of the action potential will be used as a foundation to mimic the signals produced by the neurons in question. This is a proven framework, and provides a simple empirical model that can be customized according to the properties of a given neuron. Each neuron will be printed on a circuit board that can be bypassed to simulate a lesion. A current pulse will serve as an input, but in the future, this may be replaced with feedback from a robot. This product is unique in that an analog circuit model of this neural network has not been built before. Table of Contents Abstract ..................................................................................................................................... 0 1 Introduction ........................................................................................................................ 1 1.1 Background ............................................................................................................................... 1 1.2 Project Purpose ...................................................................................................................... 2 1.3 Previous Work Done by Others ..................................................................................... 2 1.3.1 Products .................................................................................................................................................... 4 1.3.2 Patents ...................................................................................................................................................... 4 2 Project Design .................................................................................................................... 5 2.1 Background ............................................................................................................................... 5 2.2 Optimal Design ....................................................................................................................... 9 2.2.1 Objective .................................................................................................................................................. 9 2.2.2 Generalized Neuron Circuit ........................................................................................................ 11 2.2.3 Superior Colliculus .......................................................................................................................... 21 2.2.4 Cerebellum ............................................................................................................................................ 22 2.2.5 Excitatory Burst Neuron ................................................................................................................. 22 2.2.6 Long-­‐Lead Burst Neuron ................................................................................................................ 23 2.2.7 Omnipause Neuron ........................................................................................................................... 23 2.2.8 Tonic Neuron ....................................................................................................................................... 24 2.2.9 Inhibitory Burst Neuron ................................................................................................................. 25 2.2.10 Abducens Nucleus ........................................................................................................................... 25 2.2.11 Oculomotor Nucleus ...................................................................................................................... 25 2.2.12 Circuitry Case .................................................................................................................................. 26 2.2.13 Observation of Signals ................................................................................................................ 26 2.3 Prototype ................................................................................................................................. 27 2.3.1 Multisim ................................................................................................................................................ 27 2.3.2 NI Ultiboard and PCB Design ........................................................................................................ 30 2.3.3 LabVIEW Acquisition Program .................................................................................................... 31 3 Realistic Constraints ................................................................................................... 32 4 Safety Issues .................................................................................................................... 34 5 Impact of Engineering Solutions ......................................................................... 35 6 Life-Long Learning ...................................................................................................... 36 7 Budget ................................................................................................................................. 38 8 Team Member Contributions ................................................................................ 39 8.1 Justin Morse .......................................................................................................................... 39 8.2 Dean Poulos ........................................................................................................................... 39 8.3 Edward Ryan ......................................................................................................................... 40 9 Conclusion ........................................................................................................................ 41 10 References ...................................................................................................................... 42 11 Acknowledgements .................................................................................................... 43 12 Appendix ......................................................................................................................... 45 12.1 Project Specifications ..................................................................................................... 45 12.2 Purchase Requisitions and Price Quotes ............................................................ 46 12.3 Circuit Schematics ........................................................................................................... 51 BME 4910 FINAL REPORT 1 Team 8

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Both the DC Boost and AC Output Voltage of Z-Source Inverter Using Neural Network Controller with Minimization of Voltage Stress Across Devices

This paper presents a method to control both the dc boost and the ac output voltage of Z-source inverter using neural network controllers. The capacitor voltage of Z-source network has been controlled linearly in order to improve the transient response of the dc boost control of the Z-source inverter. The peak value of the line to line ac output voltage is used to control and keep the ac output...

متن کامل

Neural Controller Design for Suspension Systems

The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...

متن کامل

Vibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller

In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved.  A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012